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translations b~ and given by: 

b ,= ~ jT j ia j .  (12) 

Transformation (12) shows that, if S is a matrix that 
transforms the original lattice into a superlattice with 
determinant [SI, then the transpose of matrix T is the 
matrix that transforms the original lattice into a sub- 
lattice with determinant 1/[SI. Matrices for obtaining 
sublattices with determinants 1 1 ~-, ½, 4 can be obtained by 
taking the transpose of the inverse of the matrices 
reported in Table 1. As in the case of superlattices, 
each set of matrices generating sublattices must be 
applied to the same primitive cell of the original 
lattice, but the choice of this cell is arbitrary. 

The transformation matrices needed for obtaining 
composite lattices from the original lattice can be 
found by multiplying, in any order and in any com- 
bination, matrices generating superlattices with ma- 
trices generating sublattices. Two simple examples of 
such matrices are 

(100/020/001). (½00/010/001)--(½00/020/001) ISI = 1 
and 
(100/0¼0/001). (200/010/001)=(200/0¼0/001) ISl=½. 

In the first example, the composite lattice is obtained 
by halving the at axis of the original cell and by 

doubling the a2 axis, and the determinant of the trans- 
formation is equal to one. In the second transforma- 
tion, the at axis is doubled and the az axis is reduced to 
¼ of the original length. The number of composite 
lattices that can be produced for any given value of the 
determinant of the transformation is unlimited. For 
example, composite lattices with ISI = 1 can be obtained 
in a great variety of ways, such as by combining trans- 
formations with determinants 3 and ½, or 2 and J2-, or 3, 
½, 2 and ½, etc. So far we have made no attempt to 
classify these lattices or to determine their properties. 
Work on this subject, however, is planned. 
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The Resolution Function of a Slow Neutron Rotating-Crystal Time-of-Flight Spectrometer. 
II. Application to the Measurement of General Frequency Spectra 
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The resolution function of a slow neutron rotating-crystal time-of-flight spectrometer applied to the 
measurement of general frequency spectra is treated analytically. It is demonstrated that every com- 
ponent of the instrument may contribute to the uncertainty of the time-of-flight measurement. Focusing 
conditions are derived, leading to the concept of removable and irremovable time-of-flight spreads. 
Experimental evidence is presented to support the resolution functions, calculated on the basis of this 
theory. 

1. Introduction 

In all neutron-scattering experiments, the observed 
spectra, I(Q, co), are given by the convolution integral 

I(Q, c o ) = I I R ( Q ' - Q ,  co'-co)cr(Q',co')dQ'dco', (1.1) 

where R(Q, co) is the instrumental resolution function 
and a(Q, co) is the unknown scattering cross section. 

Q and co are defined by the momentum transfer: 

hQ =h(k~2-k2a), (1.2) 

and by the energy transfer: 

h z 
hco= 2m- (k~z-kz23) ' (1.3) 

in which m denotes the neutron mass. The indices 
0,1,2,3 refer to the different spectrometer elements, 
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i.e. neutron source, monochromator system, sample, 
and analyser system respectively. Intermediate ele- 
ments such as flight paths, L, and neutron wave vec- 
tors, k, have double indices. In order to obtain precise 
experimental data, the resolution function has to be 
known exactly. Moreover, focusing conditions should 
be such as to optimize the instrumental resolution. The 
most accurate method of determining R(Q, co) wo~tld 
be a direct measurement requiring no prior knowledge 
of instrumental parameters. This, however, is usually 
impossible except for zero energy transfer, so that in 
general R(Q, co) has to be calculated. In an earlier paper 
(Furrer, 1971), which will be referred to as paper I, 
this was done analytically for a slow neutron rotating- 
crystal time-of-flight spectrometer applied to phonon 
measurements. It turned out that the resolution func- 
tion is dependent upon the geometrical situation in real 
space. To take account of these geometry effects, it was 
useful to pursue all possible neutron flight paths in real 
space and to describe the instrumental resolution as a 
function of the flight time T. 

The present paper contains an analytical treatment 
of the resolution function of a slow neutron rotating- 
crystal time-of-flight spectrometer applied to the meas- 
urement of general frequency spectra. A general fre- 
quency spectrum can be approximated by the super- 
position of a slowly varying background and several 
peaks located at different frequencies, cot. Resolution 
and focusing effects only become important at the 
peak positions. Two approximations are made: (1) for 
mathematical simplicity, the true peaks are replaced 
by fi-functions, which is a good approximation when- 
ever the peak shape is symmetrical and do) ~ o9i (where 
dco denotes the peak width); (2)since in general the 
scattering cross section, a(Q, co), varies slowly as a 
function of the scattering vector, Q, the detailed Q-de- 
pendence of a(Q, co) is neglected. Thus we have 

a(Q, co):a(co)= ~ 6(co-co~) . (1.4) 
i 

The investigation of R(Q, T) is now reduced to cal- 
culating the one-dimensional resolution function R(T), 
which could be obtained on the basis of the expressions 
derived in paper I by describing the dispersion surfaces 
of the frequency spectra as planes cot = constant; how- 
ever, we would have to make use of the scattering sur- 
face formalism, which is rather cumbersome for the 
simplified frequency spectra defined by equation (1.4). 
Instead of that we present in this paper a more direct 
way of obtaining the instrumental resolution function. 

We shall use the same notation as in paper I. It is 
shown that every component of the spectrometer con- 
tributes to the uncertainty of the time-of-flight meas- 
urement. Methods of reducing this uncertainty and 
thereby obtaining optimum focusing are investigated. 
This gives rise to a separation into removable and 
irremovable time-of-flight uncertainties. The following 
three assumptions are made. (1) The variation of the 
flight paths (L) due to the vertical dimension of the 

monochromator,  of the sample and of the detector is 
ignored. However, this approximation has only a 
negligible influence on the instrumental resolution 
function, because the flight paths of a time-of-flight 
spectrometer are very much longer than the vertical 
dimensions mentioned above. (2) Since, in a first 
approximation, the wave number and the direction of 
the neutron beam are correlated only with respect to 
its horizontal divergence, the vertical spread of the 
neutron beam can be ignored. (3) Since the trans- 
mission functions of collimators and the mosaic 
spreads of single crystals are well approximated by 
Gaussian functions, the shape of the instrumental re- 
solution function is also Gaussian and will be described 
by its half-width. However, it is not difficult to extend 
the present investigation to include the exact shape of 
the resolution function. 

Expressions for the removable time-of-flight un- 
certainties are given in §2. The corresponding focusing 
conditions arise from the time-dependent incident 
neutron wave-number distribution, g12, which gives a 
start advantage to the slower neutrons relative to the 
faster ones, as well as from the Doppler effect. In §3, 
the irremovable contributions to R(T) resulting from 
g12 and from the thickness of both the sample and the 
detector are considered. In §4, calibration experiments 
are proposed to determine the instrumental param- 
eters. Some experimental results are also presented to 
illustrate and support the present resolution theory. 
Some final conclusions are given in § 5. 

2. Removable time-of-flight uncertainties 

2.1. Monochromator ellipsoid 
In paper I the wave-number distribution glz of the 

neutrons emitted from the monochromator has been 
calculated and illustrated for several sets of instru- 
mental parameters. Due to its ellipsoidal form it has 
been called the monochromator ellipsoid. Neglecting 
the vertical spread, it is given by: 

g12(k~2,Y12, t)~exp{ 41n2 [ _ 2  (1 - k ~ 2 ]  tg 01] 2 
0~021 L 712 k12 ] 

4 1 n 2  [ _ ( l _ k 1 2 ~  tg 01 ~2 t 712 k12 ! 

( u ]2 4ln  
-2z~ v t -  w ~22 722 , (2.1) 

where k12 denotes the wave number of a particular 
neutron, 712 is the divergence angle with respect to the 
optimum emission direction, c~ is the half-width of the 
collimator transmission function, ~1 is the half-width of 
the monochromator mosaic spread, 01 is the Bragg 
angle of neutrons emitted with the optimum wave 
number k12, v is the spin velocity of the rotating crystal, 
w is the number of reflecting planes of the mono- 
chromator, and u is an integer index denoting the 
number of neutron bursts already emitted at the time 



A. F U R R E R  289 

t. Focusing effects become possible due to the asymmet- 
ric distribution of wave numbers k;z relative to the 
mean emission time, i.e. if the monochromator rota- 
tion is chosen such that the reflecting planes reach the 
Bragg position with decreasing angle, the slower neu- 
trons get a start advantage relative to the faster ones. 

The flight times for different wave number pairs 
(k12 , k23 ) and (k'12 , k23) are given by" 

and 

m [L12 Lza'~ (2.2a) 
T =  -h- \ k,, + k2a ] 

T,=  m [L12 L23~ 
h- \ kh + k;31 +3T', (2.2b) 

where kz3 and k23 are obtained from equation (1.3). 
AT'  denotes the emission delay, which is calculated 
from equation (2.1) by searching the maximum of g12 
for fixed values of k~2: 

2 2 ( k;2  
501- 5x2 1 - tg 01 (2.3) 

A T ' =  - 2nv(5~1 + 5~2) k12 ] " 

The corresponding divergence angle turns out to be 

2522 1 - tg Ox (2.4) 
Y12- 5z, + 5z2 k12 ] " 

Subtracting (2.2b) from (2.2a) and combining equa- 
tions (2.1), (2.3) and (2.4) with g12=0.5 yields in a 
first approximation the time-of-flight spread: 

It 

B A 

q 

Fig. 1. Schematic sketch of the rotating monochromator.  The 
reflecting planes are parallel to the y axis, which is per- 
pendicular to the bisector of the incoming and outgoing 
neutron beam. Planes perpendicular to y (e.g. the planes A 
and B) scatter neutrons simultaneously with equal velo- 
cities. 

2 2 501 -- 512 
a l T =  2rcv(521 + 522) 

m i L n  L23k~2] ] ]/(5~1+5~2) 
h \ k12 + kz3a ] ctg 01 4 • ( 2 . 5 )  

2.2. Doppler effect 
Meister (1967) showed that neutron reflexion by a 

rotating single crystal leads to a space-dependent 
shift of the reflected neutron velocity and of the re- 
flexion time, which can be expressed as linear func- 
tions of the coordinate y, indicated in Fig. 1. In a first 
approximation, these shifts are given by 

B A = 2rcvmy sin 0~ 
k12-k12 h ' (2.6) 

and 

ATB= my cos 01 
hkf2 " (2.7) 

The sense of monochromator rotation has to be chosen 
so that the faster neutrons get an emission delay rela- 
tive to the slower ones; thus it is possible to com- 
pensate the shorter flight time as well as the longer 
flight path due to the monochromator thickness. 

The neutron flight times, Ta and TB, for different 
reflecting planes, A and B, of the monochromator are 
given by: 

and 

rn [ L12 Lza ) 
:irA= -h- \ k~2 + -k2~-3 (2.8a) 

rn ( L12 +y/cos 01 L23 
TB= --ff \ . . . . . .  ffcf-~ . . . . .  +-fcB2~] + A T  ~. (2.8b) 

Using equations (2.6), (2.7) and (2.8) one obtains in a 
first approximation the time-of-flight spread: 

2~zvmZysin 01 L12 +y/cos 01 L2akl2 
62T---- h 2 [ k22 + k33 ] 

my ( c o @ l )  hk12 + cos 01 , (2.9) 

rl/3 r]/2 
where y takes the values -~-  and T for monochro- 

mator crystals of cylindrical and spherical shape, re- 
spectively, in which r denotes the crystal radius. 

2.3. Focusing procedure 
The idea of focusing consists of minimizing the in- 

dividual time-of-flight spreads, dlT and dzT, defined by 
equations (2.5) and (2.9). Seven independent param- 
eters have to be determined by a minimization pro- 
cedure: k12 , 01, L12 , L23 , 501 , 512 , v. However, the calcula- 
tion often yields parameter values that are unreason- 
able because of instrumental restrictions. Thus a 
rigorous mathematical treatment will not be successful 
in general, and a semi-empirical method has to be 
applied. 

A C 28A - 5 



290 S L O W  N E U T R O N  R O T A T I N G - C R Y S T A L  T I M E - O F - F L I G H T  S P E C T R O M E T E R .  II 

Equat ion (2.5) shows that efficient focusing can be 
(~o~-~xz). How- obta ined for large values of  O~ and 2 

ever, in most  cases it is impossible to remove &~T 
completely,  since the first term in the square brackets 
is much  smaller  than the second one. L12, L23, and v 
are the appropriate  parameters to minimize fi~T. Here, 
the positive and negative terms have the same order of  
magni tude,  so that  fizT usually cancels out by a varia- 
t ion procedure. The parameter  k~z is in general pre- 
determined by intensity and energy resolution con- 
siderations and should not  be used for generating 
focusing effects. 

3. Irremovable time-of-flight uncertainties  

3.1. Monochromator ellipsoid 
In §2.1 we calculated the removable part  of  the 

time-of-flight uncertainty due to the monochromator  
ellipsoid. A delay time AT'  has been derived for 
neutrons emitted into the direction defined by 7~2, 

t t !  . . . .  
A (1) B '  il.5) C',~, {2) ID C' (1) E: (1) 

3 .  ', ' -. 

2. -. 

a 
I t i i 

,0 20 10 20 ,0 2'0 'i~ 2'0 lb 2'o 
channe t, n u m b e r  ( a r b i t r a r y  scare)  aer (arbitrary scare) 

Fig.2. Observed elastic peaks from time-of-flight spectra for 
vanadium. The dashed lines correspond to the calculated 
resolution functions. The numbers in brackets are the fac- 
tors by which the intensity has been multiplied. The channel 
width has a value of 8/zsec. 

with a fixed wave number,  k12. The irremovable time- 
of-flight uncertainty arises from neutrons scattered 
with the same wave number  k;2, but  with different 
divergence angles 712. This time-of-flight spread is 
independent  of  k'12 and may therefore be calculated for 
k12=k12. The result derived f rom equation (2.1) with 
g12=0"5 is 

1 -m/(X 2 ~2_~_ 2 2 _~_ ,r2~2 
01bl 0(010(12 b l  12 (3.1) 

fiaT= ~ V - 2- 2 ............... • 
O~ o l -[- o~12 

3.2. Sample thickness 
It has been shown in paper I that curves of  constant  

flight times at the sample position are given by a set of 
straight lines. The inclination angle relative to the 
incoming neutron beam is given by: 

k23 
tg `9 = ctg ~ , -  k12 sin ~/ ' (3.2) 

where ~ denotes the scattering angle. The uncertainty 
due to finite sample size is then obtained by a simple 
integration procedure, provided the whole sample is 
uniformly irradiated by the neutrons. Using equation 
(3.2), we get 

fi4T = mWsV(k22-2k12k23 cos ~u+k 2) 
hk12k23 , (3.3) 

where Ws is a characteristic length, depending on the 
shape of the sample. It is equal to D .  sin (~0- `9) for a 
plate, r 1/3 for a cylinder, and r 1~2 for a sphere, where r 
denotes the radius of the cylinder and the sphere, and 
D the horizontal  length of the plate, whose inclination 
angle is given by ~0. Consequently,  fi4T vanishes for 
thin plates positioned in such a manner  that ~0 = ,9. 

3.3. Detector thickness 
The thickness of  the counter introduces an uncer- 

tainty into the flight path and thus gives rise to an 
irremovable time-of-flight spread: 

Table 1. Instrumental parameters, calculated and observed widths o f  the elastic peaks shown in Fig. 2 

The vanadium sample was in the form of a 5.0 x 5-0 x 0.4 cm plate. 
The following parameters were held constant: ct01 =30', ~1 =20', r=2  cm, ~,=90 °, ,9= -45  °, L23 =200 era. 

Peak number A B C D E 
cq2 120' 80' 130' 90' 90' 
v(s-O 200 83 83 200 200 
Monochromator Sphere Cylinder Cylinder Cylinder Cylinder 
LI2 (cm) 185 300 185 275 275 
k12 = k23 (A -1) 2"34 2"34 2"34 3.92 3"92 
01 35 ° 35 ° 35 ° 20 ° 20 ° 
Ws (cm) 0.4 0.4 0.4 0.4 5.0 
(p - 45 ° - 45 ° - 45 ° _ 45 ° + 45 ° 
Wg (cm) 1.55 1.55 1.55 1.84 1.84 
81T (psec) 39-8 39.1 52.8 40.8 40.8 
&2T(psec) 1.5 12.0 14.7 8.2 8.2 
83 T (psec) 8.1 19-2 19.7 8.0 8-0 
34T ~see) 3.8 3.8 3-8 2.3 28.6 
&sT (/zsec) 10.5 10.5 10.5 7.4 7.4 
/'r (asec) 42.2 46.6 59.3 43.1 51.7 
/-'e=p (/zsec) 41"5+1"3 48"7+2"5 57.1+3.0 42.0+1.6 51"6+1"6 
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mWd (3.4) 
~sT= hk2-------3' 

where Wd is equal to the half-width of the response 
probability of the counter, depending on the shape 
and size of the detector, on the absorption properties 
and pressure of the filling gas, and on the wave number, 
k2a. This has been shown in paper I, where Wa is 
presented as a function of radius, gas pressure, and 
neutron energy for a cylindrical aHe detector. 

4. Experimental results 

The half-width of the instrumental resolution function 
R(T) is given by 

1/[ ] 1-',= t__~ (~zT)2 , (4.1) 

where the individual contributions ~ T  have been de- 
fined in §2 and §3. The calculation of F, requires a 
precise knowledge of the instrumental parameters, 
~01, ~2, ~I,Y, Ws, Wd, whose values should preferably be 
determined experimentally. Such calibration exper- 
iments are carried out by observing the incoherent 
elastic scattering from the sample at various Bragg 
angles 0~, neutron wave-numbers kl2, flight paths L12 
and L23 and speeds of rotation v. The set of resolution 
functions thus obtained for zero energy transfer may 
then be used to adapt the instrumental parameters, 
with the aid of a variational procedure. For these cali- 
bration experiments, it is important to use a sample 
whose coherent scattering contributions are negligibly 
small, in order to prevent additional broadening 
arising in the vicinity of the Bragg positions. 

Formula (4.1) is now examined by means of exper- 
imental peaks obtained with a vanadium sample at 
different spectrometer settings that have not previously 
been used for the calibration experiments. The results 
are shown in Fig. 2 for the particular instrumental pa- 
rameters given in Table 1. The experimental peaks 
indeed confirm the assumed Gaussian shape of the 
resolution functions. The calculated and observed 
widths always agree within the experimental error. No 
experimental evidence can be given for the general 
case of inelastic peaks. However, this should not reduce 
the confidence in the present resolution theory, since 
the resolution contributions (2.5), (2.9) and (3.3) con- 
tain the change from elastic to inelastic processes in a 
straightforward manner. 

5. Discussion 

By introducing the concept of removable and irremov- 
able time-of-flight spreads, the resolution function and 
the focusing conditions of a rotating-crystal time-of- 
flight spectrometer have been treated quantitatively 
for the measurement of general frequency spectra. To 
derive the unknown scattering cross-section, it has been 
assumed that the resolution function does not change 
over the small range do) given by the finite peak widths 
of the frequency spectrum. In general, the rotating- 
crystal time-of-flight spectrometer covers a large fre- 
quency range for one single instrumental configuration, 
but the focusing conditions are such that only part of 
this range can be observed with optimum resolution. 
If one is mainly interested in line widths, a single fre- 
quency spectrum must therefore be measured several 
times with different spectrometer settings adapted to 
the respective frequency transfers. However, this is not 
a specific disadvantage of a time-of-flight spectrom- 
eter. 

Two quantities are of interest for planning actual 
experiments: the energy resolution rather than the 
absolute instrumental resolution F, defined by eqlaa- 
tion (4.1) and the intensity. The energy resolution is 
given by 

dE 2hk~3 
E - m L 2 3 ( k b - k h ~  r , ,  (5.1) 

where E denotes the energy transfer defined in equation 
(1.3). By integrating equation (2.1) over k;2,h2, and t, 
the intensity turns out to be 

I,-, A(~I, 1;)WOCoi~10q2k12 ctg 01. (5.2) 

Herein, A(~I, v) takes account of the neutron storage 
effect described by Carvalho, Ehret & G1/iser (1967). 

It is worthwhile mentioning here that the procedure 
described in this paper can easily be adapted to a 
randomly pulsed experiment, as well as to a spectrom- 
eter at a pulsed neutron source. 

I wish to acknowledge the stimulating discussions 
with my colleagues of the slow neutron scattering group 
at Wtirenlingen. 
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